über 250 kostenlose
Abituraufgaben
Lösung als Video
und ausformuliert
Alle Lösungen von
erfahrenen Lehrern
 
 
 
 
AB SOFORT: KEIN LOGIN mehr erforderlich - alle Lösungen zu den Abituraufgaben sind frei zugänglich.
 

Abitur 2009 Mathematik LK Stochastik IV

Die folgenden Angaben zum Rauchverhalten beziehen sich auf den Drogen- und Suchtbericht der Bundesregierung aus dem Jahr 2008. Personen, die regelmäßig rauchen, werden unabhängig vom Geschlecht als Raucher bezeichnet. Die anderen Personen werden als Nichtraucher bezeichnet.
Ein Drittel der Erwachsenen in Deutschland sind Raucher.
Teilaufgabe 1a  (3 BE)

Mit welcher Wahrscheinlichkeit sind unter 15 zufällig ausgewählten Erwachsenen mehr als die Hälfte Nichtraucher?

Teilaufgabe 1b  (5 BE)

Es werden zufällig nacheinander n Erwachsene befragt. Die Wahrscheinlichkeit dafür, dass bei der Befragung Raucher und Nichtraucher einander immer abwechseln, werde mit p n bezeichnet, wobei der erste Befragte Raucher oder Nichtraucher sein kann.
Zeigen Sie, dass für eine ungerade Anzahl n 3 gilt: p n = ( 2 3 ) n - 1 .

Teilaufgabe 1c  (3 BE)

Ab welcher Anzahl n ist die Wahrscheinlichkeit p n aus Teilaufgabe 1b kleiner als ein Milliardstel?

Teilaufgabe 2  (6 BE)

Im Jahr 2005 waren 20 % der 12- bis 17-jährigen Jugendlichen Raucher. Es wird vermutet, dass durch diverse Kampagnen diese Raucherquote auf 18 % gesenkt werden konnte. Um diese Vermutung zu testen, werden 500 Jugendliche dieser Altersgruppe anonym befragt. Die Nullhypothese "Mindestens 20 % der Jugendlichen sind Raucher" wird abgelehnt, wenn weniger als 19 % der Befragten regelmäßig rauchen. Berechnen Sie unter der Annahme, dass die Kampagnen so erfolgreich waren wie vermutet, die Wahrscheinlichkeit für den Fehler 2. Art. Verwenden Sie die Normalverteilung als Näherung.

Im Folgenden werden ausschließlich Schülerinnen und Schüler der Sekundarstufe I, die die Jahrgangsstufen 5-10 umfasst, betrachtet. Von diesen besuchen in Bayern jeweils 35 % eine Hauptschule beziehungsweise ein Gymnasium. Vereinfachend werde angenommen, dass die Übrigen eine Realschule besuchen.
Es soll angenommen werden, dass die folgenden Raucherquoten aus dem Bericht der Bundesregierung auch für Bayern gelten: In der Sekundarstufe I sind insgesamt 16 % Raucher; an Hauptschulen ist die Quote der Raucher mit 24 % mehr als dreimal so hoch wie an Gymnasien mit 7 % .
Teilaufgabe 3a  (6 BE)

Wie groß ist die Raucherquote an Realschulen? Mit welcher Wahrscheinlichkeit
besucht ein aus der Sekundarstufe I zufällig ausgewähl-ter Raucher ein Gymnasium?
[Teilergebnis: Raucherquote an Realschulen: 17 % ]

Teilaufgabe 3b  (5 BE)

Mit welcher Wahrscheinlichkeit besuchen 2 aus der Sekundarstufe I zufällig ausgewählte Personen die gleiche Schulart und mindestens eine der beiden Personen raucht regelmäßig?

Teilaufgabe 3c  (5 BE)

An einem Gymnasium besuchen 800 Schüler die Klassen 5 bis 10, von denen jeder mit einer Wahrscheinlichkeit von 7 % regelmäßig raucht. Geben Sie mit Hilfe der Ungleichung von Tschebyschow ein möglichst kleines Intervall symmetrisch um den Erwartungswert an, in dem die Zahl der regelmäßigen Raucher der Sekundarstufe I mit einer Wahrscheinlichkeit von mindestens 90 % liegt.

Teilaufgabe 4a  (4 BE)

An einem Gymnasium werden die 38 Interessenten am Grundkurs Physik, von denen 12 regelmäßig rauchen, auf 2 Kurse mit 18 beziehungsweise 20 Teilnehmern zufällig verteilt. Mit welcher Wahrscheinlichkeit sind in jedem der beiden Kurse gleich viele Raucher?

Teilaufgabe 4b  (3 BE)

Für die K12 eines Gymnasiums sind im Fach Geschichte 4 Kurse mit jeweils mindestens 20 Teilnehmern eingerichtet worden. Wie viele verschiedene Aufteilungen der 20 Raucher der K12 auf diese 4 Kurse sind prinzipiell möglich, wenn nur zwischen Rauchern und Nichtrauchern unterschieden wird?

Themen-Übersicht
Themen
Tipp:
Arbeite frühzeitig mit der Merkhilfe Mathematik,
die als Hilfsmittel im Abitur zugelassen ist.
Feedback:
Du hast einen Fehler gefunden oder hast Anregungen zur Internetseite?