A(0|0|0); B(60|35|0); C(0|70|0); D(20|35|50)

a. \[P = r \cdot (20 \mid 35 \mid 50) ; 0 \leq r \leq 1 \] sind Punkte der Kante AD. Der Vektor \(\overrightarrow{PB} \) muss senkrecht zum Vektor \(\overrightarrow{AD} \) sein:
\[
\begin{bmatrix}
60 - 20r \\
35 - 35r \\
-50r
\end{bmatrix} \times \begin{bmatrix}
20 \\
35 \\
50
\end{bmatrix} = 0 \iff
1200 - 400r + 1225 - 1225r - 2500r = 0 \iff
2425 - 400r - 1225r - 2500r = 0 \implies r = \frac{2425}{4125} \approx 0,5879 .\]
Der Abstand ist dann
\[
|BP| = \sqrt{(60 - 20r)^2 + (35 - 35r)^2 + (50r)^2} \approx \sqrt{2327,33 + 208 + 864} \approx 58,3
\]
mit einer Abweichung von \(\frac{0,3}{58} \approx 0,5\% \). Bedingung ist also erfüllt.

c. Zu berechnen ist der Schnittpunkt E der Geraden
\[
\vec{x} = \overrightarrow{OD} + r \cdot \vec{v} = \begin{bmatrix}
20 \\
35 \\
50
\end{bmatrix} + r \cdot \begin{bmatrix}
10 \\
4 \\
-5
\end{bmatrix} \text{ mit der x-y-Ebene } z=0,
\]
also \(50 - 5r = 0 \iff r = 10 \implies E(120|75|0) \). Aus der Projektion erkennt man, dass für die Berechnung der Schattenfläche nur das Dreieck BCE in Frage kommt:
\[
A_{BCE} = \frac{1}{2} |\overrightarrow{BC} \times \overrightarrow{BE}| = \frac{1}{2} \begin{bmatrix}
-60 \\
35 \\
0
\end{bmatrix} \times \begin{bmatrix}
60 \\
0 \\
0
\end{bmatrix} = \frac{1}{2} \begin{bmatrix}
0 \\
0 \\
-4500
\end{bmatrix} = 2250 FE
\]
d. Zu zeigen ist, dass die Strecke von L(120|75|0) und S(-480|-15|300) nicht durch die Pyramide geht. Da L=E ist, muss nur der Schnittpunkt der Geraden \(\vec{x} = \overrightarrow{OL} + t \cdot \overrightarrow{LS} \)
\[
\begin{bmatrix}
120 \\
75 \\
0
\end{bmatrix} + t \cdot \begin{bmatrix}
-600 \\
-90 \\
300
\end{bmatrix} \text{ mit dem Dreieck BCD bestimmt werden.}
\]
Dazu berechnen wir zunächst die Ebene \(E_{BCD} : \)
\[
\overrightarrow{BD} \times \overrightarrow{BC} = \begin{bmatrix}
-40 \\
0 \\
50
\end{bmatrix} \times \begin{bmatrix}
-60 \\
35 \\
0
\end{bmatrix} = \begin{bmatrix}
-1750 \\
-3000 \\
-1400
\end{bmatrix} \iff \vec{n} = \begin{bmatrix}
35 \\
60 \\
28
\end{bmatrix}
\]
Es gilt:

\[
E_{BCD} : \begin{pmatrix} 35 \\ 60 \\ 28 \end{pmatrix} \cdot \bar{x} = \begin{pmatrix} 35 \\ 60 \\ 28 \end{pmatrix} \cdot \begin{pmatrix} 60 \\ 35 \\ 0 \end{pmatrix} = 4200, \text{ also } 35x_1 + 60x_2 + 28x_3 = 4200. \text{ Wir setzen nun die Gerade ein:}
\]

\[
35(120 - 600t) + 60(75 - 90t) + 28 \cdot 300t = 4200 \iff 4200 - 21000t + 4500 - 5400t + 8400t = 4200 \iff -18000t = -4500 \iff t = 0,25. \text{ Der Schnittpunkt mit der Ebene } E_{BCD} \text{ ist } P(-30|52,5|75). \text{ Es muss nun festgestellt werden, ob dieser Punkt innerhalb des Dreiecks BCD liegt. Das ist dann der Fall, wenn es Zahlen } r,s \text{ mit } r+s\leq1 \text{ gibt, sodass } OP = OB + r \cdot BC + s \cdot BD, \text{ also:}
\]

\[
\begin{pmatrix} -30 \\ 52,5 \\ 75 \end{pmatrix} = \begin{pmatrix} 60 \\ 35 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} -60 \\ 35 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} -40 \\ 0 \\ 50 \end{pmatrix}. \text{ Aus (3) folgt } s=1,5. \text{ Somit kann der Schnittpunkt nicht im Dreieck BCD liegen.}
\]

e. \text{ Sei } Q \text{ ein Punkt auf der Strecke } LB, \text{ also } \overrightarrow{OQ} = \overrightarrow{OL} + t \cdot \overrightarrow{LB}; 0 \leq t \leq 1, \text{ dann muss die Gerade } \bar{x} = \overrightarrow{OQ} + \lambda\overrightarrow{QS} \text{ und bestimmt werden, für welches } t \text{ und welches } \lambda \text{ genau die Kante DB geschnitten wird:}